Преобразования типов
Если операнды оператора принадлежат к разным типам, то они приводятся к некоторому общему типу. Приведение выполняется в соответствии с небольшим числом правил. Обычно автоматически производятся лишь те преобразования, которые без какой-либо потери информации превращают операнды с меньшим диапазоном значений в операнды с большим диапазоном, как, например, преобразование целого в число с плавающей точкой в выражении вроде f+i. Выражения, не имеющие смысла, например число с плавающей точкой в роли индекса, не допускаются. Выражения, в которых могла бы теряться информация (скажем, при присваивании длинных целых переменным более коротких типов или при присваивании значений с плавающей точкой целым переменным), могут повлечь за собой предупреждение, но они допустимы.
Значения типа char - это просто малые целые, и их можно свободно использовать в арифметических выражениях, что значительно облегчает всевозможные манипуляции с символами. В качестве примера приведем простенькую реализацию функции atoi, преобразующей последовательность цифр в ее числовой эквивалент.
/* atoi: преобразование s в целое */ int atoi(char s[]) { int i, n; n = 0; for (i = 0; s[i] >= '0' && s[i]
Как мы уже говорили в , выражение
s[i] -'0'
дает числовое значение символа, хранящегося в s[i], так как значения '0', '1' и пр. образуют непрерывную возрастающую последовательность.
Другой пример приведения char к int связан с функцией lower, которая одиночный символ из набора ASCII, если он является заглавной буквой, превращает в строчную. Если же символ не является заглавной буквой, lower его не изменяет.
/* lower: преобразование c в строчную, только для ASCII */ int lower(int c) { if (c >= 'A' && c
В случае ASCII эта программа будет работать правильно, потому что между одноименными буквами верхнего и нижнего регистров - одинаковое расстояние (если их рассматривать как числовые значения). Кроме того, латинский алфавит - плотный, т. е. между буквами A и Z расположены только буквы. Для набора EBCDIC последнее условие не выполняется, и поэтому наша программа в этом случае будет преобразовывать не только буквы.
Стандартный заголовочный файл <ctype.h>, описанный в , определяет семейство функций, которые позволяют проверять и преобразовывать символы независимо от символьного набора. Например, функция tolower(c) возвращает букву c в коде нижнего регистра, если она была в коде верхнего регистра, поэтому tolower - универсальная замена функции lower, рассмотренной выше. Аналогично проверку
c >= '0' && c
можно заменить на isdigit(c)
Далее мы будем пользоваться функциями из <ctype.h>.
Существует одна тонкость, касающаяся преобразования символов в целые числа: язык не определяет, являются ли переменные типа char знаковыми или беззнаковыми. При преобразовании char в int может ли когда- нибудь получиться отрицательное целое? На машинах с разной архитектурой ответы могут отличаться. На некоторых машинах значение типа char с единичным старшим битом будет превращено в отрицательное целое (посредством "распространения знака”). На других - преобразование char в int осуществляется добавлением нулей слева, и, таким образом, получаемое значение всегда положительно.
Гарантируется, что любой символ из стандартного набора печатаемых символов никогда не будет отрицательным числом, поэтому в выражениях такие символы всегда являются положительными операндами. Но произвольный восьмибитовый код в переменной типа char на одних машинах может быть отрицательным числом, а на других - положительным. Для совместимости переменные типа char, в которых хранятся несимвольные данные, следует специфицировать явно как signed или unsigned.
Отношения вроде i > j и логические выражения, перемежаемые операторами && и , определяют выражение-условие, которое имеет значение 1, если оно истинно, и 0, если ложно. Так, присваивание
d = c >= '0' && c
установит d в значение 1, если c есть цифра, и 0 в противном случае. Однако функции, подобные isdigit, в качестве истины могут выдавать любое ненулевое значение. В местах проверок внутри if, while, for и пр. "истина” просто означает "не нуль”.
Неявные арифметические преобразования, как правило, осуществляются естественным образом. В общем случае, когда оператор вроде + или * с двумя операндами (бинарный оператор) имеет разнотипные операнды, прежде чем операция начнет выполняться, "низший” тип повышается до "высшего”. Результат будет иметь высший тип. В приложения A правила преобразования сформулированы точно. Если же в выражении нет беззнаковых операндов, можно удовлетвориться следующим набором неформальных правил:
Заметим, что операнды типа float не приводятся автоматически к типу double; в этом данная версия языка отличается от первоначальной. Вообще говоря, математические функции, аналогичные собранным в библиотеке <math.h>, базируются на вычислениях с двойной точностью. В основном float используется для экономии памяти на больших массивах и не так часто - для ускорения счета на тех машинах, где арифметика с двойной точностью слишком дорога с точки зрения расхода времени и памяти.
Правила преобразования усложняются с появлением операндов типа unsigned. Проблема в том, что сравнения знаковых и беззнаковых значений зависят от размеров целочисленных типов, которые на разных машинах могут отличаться. Предположим, что значение типа int занимает 16 битов, а значение типа long - 32 бита. Тогда -1L < 1U, поскольку 1U принадлежит типу unsigned int и повышается до типа signed long. Но –1L >1UL, так как -1L повышается до типа unsigned long и воспринимается как большое положительное число.
Преобразования имеют место и при присвоениях: значение правой части присвоения приводится к типу левой части, который и является типом результата.
Тип char превращается в int путем распространения знака или другим описанным выше способом.
Тип long int преобразуются в short int или в значения типа char путем отбрасывания старших разрядов. Так, в
int i; char c; i = c; c = i;
значение c не изменится. Это справедливо независимо от того, распространяется знак при переводе char в int или нет. Однако, если изменить очередность присваиваний, возможна потеря информации.
Если x принадлежит типу float, а i - типу int, то и x=i, и i=z вызовут преобразования, причем перевод float в int сопровождается отбрасыванием дробной части. Если double переводится во float, то значение либо округляется, либо обрезается; это зависит от реализации.
Так как аргумент в вызове функции есть выражение, при передаче его функции также возможно преобразование типа. При отсутствии прототипа (функции аргументы тина char и short переводятся в int, a float - в double. Вот почему мы объявляли аргументы типа int или double даже тогда, когда в вызове функции использовали аргументы типа char или float.
И наконец, для любого выражения можно явно ("насильно”) указать преобразование его типа, используя унарный оператор, называемый приведением. Конструкция вида
(имя-типа) выражение
приводит выражение к указанному в скобках типу по перечисленным выше правилам. Смысл операции приведения можно представить себе так: выражение как бы присваивается некоторой переменной указанного типа, и эта переменная используется вместо всей конструкции. Например, библиотечная функция sqrt рассчитана на аргумент типа double и выдает чепуху, если ей подсунуть что-нибудь другое (sqrt описана в ). Поэтому, если n имеет целочисленный тип, мы можем написать
sqrt((double) n)
и перед тем, как значение n будет передано функции, оно будет переведено в double. Заметим, что операция приведения всего лишь вырабатывает значение n указанного типа, но саму переменную n не затрагивает. Приоритет оператора приведения столь же высок, как и любого унарного оператора, что зафиксировано в таблице, помещенной в конце этой главы.
В том случае, когда аргументы описаны в прототипе функции, как тому и следует быть, при вызове функции нужное преобразование выполняется автоматически. Так, при наличии прототипа функции sqrt:
double sqrt(double);
перед обращением к sqrt в присваивании
root2 = sqrt(2);
целое 2 будет переведено в значение double 2.0 автоматически без явного указания операции приведения.
Операцию приведения проиллюстрируем на переносимой версии генератора псевдослучайных чисел и функции, инициализирующей "семя”. И генератор, и функция входят в стандартную библиотеку.
unsigned long int next = 1; /* rand: возвращает псевдослучайное целое 0...32767 */ int rand(void) { next = next * 1103515245 + 12345; return (unsigned int)(next/65536) % 32768; }
/* srand: устанавливает "семя” для rand() */ void srand(unsigned int seed) { next = seed; }
Упражнение 2.3. Напишите функцию htol(s), которая преобразует последовательность шестнадцатеричных цифр, начинающуюся с 0x или 0X, в соответствующее целое. Шестнадцатеричными цифрами являются символы 0...9, a...f, А...F.