Если p есть указатель на некоторый элемент массива, то p++ увеличивает p так, чтобы он указывал на следующий элемент, а p+=i увеличивает его, чтобы он указывал на i-й элемент после того, на который указывал ранее. Эти и подобные конструкции - самые простые примеры арифметики над указателями, называемой также адресной арифметикой.
Си последователен и единообразен в своем подходе к адресной арифметике. Это соединение в одном языке указателей, массивов и адресной арифметики - одна из сильных его сторон. Проиллюстрируем сказанное построением простого распределителя памяти, состоящего из двух программ. Первая, alloc(n), возвращает указатель p на n последовательно расположенных ячеек типа char; программой, обращающейся к alloc, эти ячейки могут быть использованы для запоминания символов. Вторая, afree(p), освобождает память для, возможно, повторной ее утилизации. Простота алгоритма обусловлена предположением, что обращения к afree делаются в обратном порядке по отношению к соответствующим обращениям к alloc. Таким образом, память, с которой работают alloc и afree, является стеком (списком, в основе которого лежит принцип "последним вошел, первым ушел"). В стандартной библиотеке имеются функции malloc и free, которые делают то же самое, только без упомянутых ограничений: в мы покажем, как они выглядят.
Функцию alloc легче всего реализовать, если условиться, что она будет выдавать куски некоторого большого массива типа char, который мы назовем allocbuf. Этот массив отдадим в личное пользование функциям alloc и afree. Так как они имеют дело с указателями, а не с индексами массива, то другим программам знать его имя не нужно. Кроме того, этот массив можно определить в том же исходном файле, что и alloc и afree, объявив его static, благодаря чему он станет невидимым вне этого файла. На практике такой массив может и вовсе не иметь имени, поскольку его можно запросить с помощью malloc у операционной системы и получить указатель на некоторый безымянный блок памяти.